State Dependence in Immunization and the Role of Discouragement

Kabir Dasgupta (Federal Reserve Board)
Gail Pacheco (AUT)
Alexander Plum (AUT)

Centre for Longitudinal Research Conference 2022 (Auckland)

November 29, 2022

- ▶ Benefits of vaccination on child health and mortality are well-documented (vaccine-preventable disease ↓)
- ► Under-immunization on the rise:
 - vaccine safety concerns
 - ► COVID-19 pandemic
- ► This study: does the experience of having a child immunized genuinely influence future immunization decisions
- ► GUiNZ survey and a dynamic random-effects probit model (initial conditions problem; unobserved heterogeneity)
- Finding: considerable degree of state dependence in child immunization (21 percentage points)

- ▶ Benefits of vaccination on child health and mortality are well-documented (vaccine-preventable disease ↓)
- Under-immunization on the rise:
 - vaccine safety concerns
 - ► COVID-19 pandemic
- ► This study: does the experience of having a child immunized genuinely influence future immunization decisions
- ► GUiNZ survey and a dynamic random-effects probit model (initial conditions problem; unobserved heterogeneity)
- Finding: considerable degree of state dependence in child immunization (21 percentage points)

- ▶ Benefits of vaccination on child health and mortality are well-documented (vaccine-preventable disease ↓)
- Under-immunization on the rise:
 - vaccine safety concerns
 - ► COVID-19 pandemic
- ► This study: does the experience of having a child immunized genuinely influence future immunization decisions
- ► GUiNZ survey and a dynamic random-effects probit model (initial conditions problem; unobserved heterogeneity)
- Finding: considerable degree of state dependence in child immunization (21 percentage points)

- ▶ Benefits of vaccination on child health and mortality are well-documented (vaccine-preventable disease ↓)
- Under-immunization on the rise:
 - vaccine safety concerns
 - ► COVID-19 pandemic
- This study: does the experience of having a child immunized genuinely influence future immunization decisions
- ► GUiNZ survey and a dynamic random-effects probit model (initial conditions problem; unobserved heterogeneity)
- Finding: considerable degree of state dependence in child immunization (21 percentage points)

- ▶ Benefits of vaccination on child health and mortality are well-documented (vaccine-preventable disease ↓)
- Under-immunization on the rise:
 - vaccine safety concerns
 - ► COVID-19 pandemic
- This study: does the experience of having a child immunized genuinely influence future immunization decisions
- ► GUiNZ survey and a dynamic random-effects probit model (initial conditions problem; unobserved heterogeneity)
- Finding: considerable degree of state dependence in child immunization (21 percentage points)

- ▶ Benefits of vaccination on child health and mortality are well-documented (vaccine-preventable disease ↓)
- Under-immunization on the rise:
 - vaccine safety concerns
 - COVID-19 pandemic
- This study: does the experience of having a child immunized genuinely influence future immunization decisions
- ► GUiNZ survey and a dynamic random-effects probit model (initial conditions problem; unobserved heterogeneity)
- ► Finding: considerable degree of state dependence in child immunization (21 percentage points)

- ► Growing Up in New Zealand (GUiNZ) survey
- ► Two sets of immunization-related information:
 - immunization status of the child (6 weeks, 3 months, 5 months, 15 months, and 48 months)
 - received discouraging information before child birth

- Growing Up in New Zealand (GUiNZ) survey
- ► Two sets of immunization-related information:
 - immunization status of the child (6 weeks, 3 months, 5 months, 15 months, and 48 months)
 - received discouraging information before child birth

- Growing Up in New Zealand (GUiNZ) survey
- ► Two sets of immunization-related information:
 - immunization status of the child (6 weeks, 3 months, 5 months, 15 months, and 48 months)
 - received discouraging information before child birth

Mother's characteristics and immunisation behavior

	Child immunized						
	No	Yes					
Age	31.28	30.70					
Disability	6.54	5.91					
First child	26.23	41.30					
Child planned	60.25	65.82					
Household income							
≤\$20k	3.52	3.51					
\$20k-\$30k	4.81	5.06					
\$30k-\$50k	14.76	12.74					
\$50k-\$70k	20.88	16.21					
\$70k-\$100k	25.37	23.56					
\$100k-\$150k	20.06	23.50					
>\$150k	10.60	15.42					
Highest education							
No sec education	5.19	4.66					
NCEA 1-4	21.25	20.93					
NCEA 5-6	33.69	30.06					
Bachelor's degree	25.04	25.55					
Higher degree	14.82	18.80					
Self prioritised ethnicity							
NZ European	71.50	61.98					
Māori	16.39	12.09					
Pasifika	6.92	11.64					
Asian	5.19	14.29					
Intention to immunise child							
Immunize	52.41	87.30					
No immunization	26.61	0.29					
Not decided yet	20.98	12.40					
Sample	1 849	21 457					

Discouraging information on immunisation

	Full sample	NZ European	Māori	Pasifika	Asian			
Received discouraging information before child birth								
Share	15.05	18.28	15.77	7.55	6.30			
Individuals	4 778	2 958	597	556	667			
Child immunised at t								
No discouraging information	93.41	92.62	90.83	95.28	97.16			
Discouraging information	84.52	83.48	82.61	93.17	94.00			
Total	92.07	90.96	89.54	95.12	96.96			
Sample	23 306	14 621	2 897	2 625	3 163			

Transition matrix of immunisation

	immunized at <i>t</i>				
immunized at $t-1$	No	Yes	$Total_{t-1}$		
No	71.41	28.59	6.57		
	(81.64)	(18.36)	(14.28)		
Yes	4.40	95.60	93.43		
	(5.74)	(94.26)	(85.72)		
$Total_t$	8.80	91.20			
	(16.58)	(83.42)			

State-dependence models

Dynamic reduced form model on the decision to immunize:

$$y_{it} = 1 \Big(\beta y_{i(t-1)} + X'_{i(t=-1)} \rho + \nu_{it} > 0 \Big)$$
 (1)

with $\nu_{it} \sim N(0, \sigma_{\nu}^2)$.

$$\nu_{it} = \alpha_i + u_{it} \tag{2}$$

with $\alpha_i \sim N(0, \sigma_\alpha^2)$ and $u_{it} \sim N(0, \sigma_u^2)$. The correlation is represented by:

$$corr(\nu_{it}, \nu_{is}) = \lambda = \frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2} + \sigma_{u}^{2}}$$
(3)

for $t, s = 1, \ldots, T$ and $t \neq s$.

State-dependent models

$$\alpha_i = a_0 + a_1 y_{i(t=0)} + \gamma_i \tag{4}$$

Using Equation (4), the Equation (1) can be re-written as:

$$y_{it} = 1 \Big(\beta y_{i(t-1)} + X'_{i(t-1)} \rho + a_0 + a_1 y_{i(t-0)} + \gamma_i + u_{it} > 0 \Big)$$
 (5)

Note that y_{it} is binary and we chose as normalization $\sigma_u^2 = 1$. The outcome probability is:

$$P_{it}(\gamma^*) = \Phi\Big([\beta y_{i(t-1)} + X'_{i(t-1)}\rho + a_0 + a_1 y_{i(t-1)} + \sigma_\gamma \gamma^*)(2y_{it} - 1) \Big]$$

The respective likelihood function is:

$$L = \prod_{i=1}^{N} \int_{\gamma^*} \left\{ \prod_{t=1}^{T} P_{it}(\gamma^*) \right\} dF(\gamma^*)$$
 (6)

Partial effects

$$PE_{i} = \Phi\left(\left[\hat{\beta} + X'_{i(t=-1)}\hat{\rho} + \hat{a}_{0} + \hat{a}_{1}y_{i(t=0)}\right]\left[\sqrt{1-\hat{\lambda}}\right]\right) - \Phi\left(\left[X'_{i(t=-1)}\hat{\rho} + \hat{a}_{0} + \hat{a}_{1}y_{i(t=0)}\right]\left[\sqrt{1-\hat{\lambda}}\right]\right)$$
(7)

Discouraging information

$$y_{it} = 1 \Big(\beta_j y_{i(t-1)} \times D_i + X'_{i(t=-1)} \rho + a_0 + a_1 y_{i(t=0)} + \gamma_i + u_{it} > 0 \Big)$$
 (8)

The partial effects are calculated accordingly:

$$PE_{i} = \Phi\left(\left[\hat{\beta}_{j} + X'_{i(t=-1)}\hat{\rho} + \hat{a}_{0} + \hat{a}_{1}y_{i(t=0)}\right]\left[\sqrt{1-\hat{\lambda}}\right]\right) - \Phi\left(\left[X'_{i(t=-1)}\hat{\rho} + \hat{a}_{0} + \hat{a}_{1}y_{i(t=0)}\right]\left[\sqrt{1-\hat{\lambda}}\right]\right)$$
(9)

Results

Regression results

	Coef.	Std. Err.					
Age	0.017	0.033					
Age squared	-0.000	0.001					
Disability	0.005	0.075					
First child	0.361***	0.047					
Child planned	0.134***	0.042					
Household income							
≤\$20k	refer	ence					
\$20k-\$30k	0.037	0.124					
\$30k-\$50k	-0.055	0.108					
\$50k-\$70k	-0.088	0.107					
\$70k-\$100k	-0.049	0.106					
\$100k-\$150k	-0.036	0.109					
>\$150k	0.125	0.117					
Highest education							
No sec education	reference						
NCEA 1-4	-0.028	0.086					
NCEA 5-6	0.004	0.0842					
Bachelor's degree	-0.032	0.090					
Higher degree	0.024	0.0957					
Self prioritised ethnicity							
NZ European	reference						
Māori	-0.171***	0.053					
Pasifika	0.189***	0.064					
Asian	0.395***	0.069					
Intention to immunis	e child						
Immunise	reference						
No immunisation	-1.328***	0.141					
Not decided yet	-0.388***	0.055					
$immunised_{t-1}$	1.135***	0.091					
$immunised_{t=0}$	1.459***	0.134					
$\hat{\lambda}$	0.120***	0.039					
Sample	23 306						

Results

Regression results (average partial effects)

	Full	By mother's ethnicity			
	sample	NZ European	Māori	Pasifika	Asian
Basic specification	0.209***	0.196***	0.246***	0.218***	0.213***
	(0.035)	(0.043)	(0.078)	(0.121)	(0.093)
Individuals	4 778	2 958	597	556	667
w/o intent to immunise	0.220***	0.210***	0.347***	-	-
	(0.076)	(0.086)	(0.128)		
Individuals	733	574	81		
Mother's age ≤ 25	0.136***	0.130**	0.143*	-0.004	0.064
	(0.440)	(0.061)	(0.077)	(0.051)	(0.099)
Individuals	904	407	212	154	81

Results

Received discouraging information D_i before childbirth

	Full sample	NZ European	Māori	Pasifika	Asian
$y_{i(t-1)} = 0 \& D_i = 0$	reference category				
$y_{i(t-1)} = 0 \& D_i = 1$	-0.099***	-0.085**	-0.104	-0.073	-0.192
()	(0.035)	(0.041)	(0.085)	(0.209)	(0.232)
$y_{i(t-1)} = 1 \& D_i = 0$	0.194***	0.180***	0.238***	0.217*	0.195**
,	(0.034)	(0.042)	(0.079)	(0.121)	(0.091)
$y_{i(t-1)} = 1 \& D_i = 1$	0.177***	0.165***	0.194**	0.219*	0.182**
,	(0.034)	(0.042)	(0.080)	(0.123)	(0.089)
Individuals	4778	2 958	597	556	667

- Research question: does immunizing a child at a prior schedule genuinely influence the likelihood of vaccinating the child at the following schedule?
- Growing Up in NZ study which provides immunization status across various schedules
- Random-effects probit model controlling for the initial conditions problem (the effect of the first decision) and unobserved heterogeneity (via individual-specific time-invariant differences).
- Findings:
 - Strong state dependence in child immunization (21 percentage points)
 - Ethnic differences (state dependence playing a larger role for Māori)

- Research question: does immunizing a child at a prior schedule genuinely influence the likelihood of vaccinating the child at the following schedule?
- Growing Up in NZ study which provides immunization status across various schedules
- Random-effects probit model controlling for the initial conditions problem (the effect of the first decision) and unobserved heterogeneity (via individual-specific time-invariant differences).
- Findings:
 - Strong state dependence in child immunization (21 percentage points)
 - Ethnic differences (state dependence playing a larger role for Māori)

- Research question: does immunizing a child at a prior schedule genuinely influence the likelihood of vaccinating the child at the following schedule?
- Growing Up in NZ study which provides immunization status across various schedules
- Random-effects probit model controlling for the initial conditions problem (the effect of the first decision) and unobserved heterogeneity (via individual-specific time-invariant differences).
- Findings:
 - Strong state dependence in child immunization (21 percentage points)
 - Ethnic differences (state dependence playing a larger role for Māori)

- Research question: does immunizing a child at a prior schedule genuinely influence the likelihood of vaccinating the child at the following schedule?
- Growing Up in NZ study which provides immunization status across various schedules
- Random-effects probit model controlling for the initial conditions problem (the effect of the first decision) and unobserved heterogeneity (via individual-specific time-invariant differences).
- Findings:
 - Strong state dependence in child immunization (21 percentage points)
 - Ethnic differences (state dependence playing a larger role for Māori)

- Research question: does immunizing a child at a prior schedule genuinely influence the likelihood of vaccinating the child at the following schedule?
- Growing Up in NZ study which provides immunization status across various schedules
- Random-effects probit model controlling for the initial conditions problem (the effect of the first decision) and unobserved heterogeneity (via individual-specific time-invariant differences).
- ► Findings:
 - Strong state dependence in child immunization (21 percentage points)
 - Ethnic differences (state dependence playing a larger role for Māori)

- Research question: does immunizing a child at a prior schedule genuinely influence the likelihood of vaccinating the child at the following schedule?
- Growing Up in NZ study which provides immunization status across various schedules
- Random-effects probit model controlling for the initial conditions problem (the effect of the first decision) and unobserved heterogeneity (via individual-specific time-invariant differences).
- ► Findings:
 - Strong state dependence in child immunization (21 percentage points)
 - Ethnic differences (state dependence playing a larger role for Māori)

Thank you for your attention!!!

I alexander.plum@aut.ac.nz