Family Size Effects on Child Health: Evidence on the Quantity-Quality Trade-off using the NLSY

Kabir Dasgupta¹ and Keisha Solomon²

¹NZWRI. AUT

²Temple University

Workshop, Centre for Social Data Analytics February 23-24, 2017

Outline

- Research Summary
- 2 Existing Literature
- 3 Data and Empirical Strategy
- 4 Analysis & Results
- Conclusion

Research Summary

Research Motivation

- The Quantity-Quality trade-off (QQ) theory predicts a negative relationship between family size and child quality.
- Family size literature has focussed mainly on children's cognitive development.
- Lack of research with respect to child health outcomes of changes in family size.
- The study focuses on family size effects on important child health outcomes.

Research Summary

Analysis and Conclusion

- The study uses body weight indicators as the main outcomes of interest.
- Data: NLSY79 (mother's cohort) matched with NLSY CYA (Child and Young Adult surveys).
- Identification: Instrumental variable regression (supported by multiple robustness checks) & panel data analysis using child fixed effects.
- Key finding: The study does not find strong evidence in support of the QQ theory.

Research Summary

Main Contributions

- First study to systematically analyze the effects of child health using a US-based sample.
- The study looks at multiple health and behavioral outcomes to explain the underlying mechanism of the observed impacts.
- Policy implications Increase in family size has a negative relationship with chances of being overweight (obese), but in some cases, may also lead to an increase in the likelihood of being underweight.

Family Size and Child Quality

- The QQ theory was first proposed by Becker and his co-authors (Becker 1960; Willis 1973; Becker & Tomes 1973; Becker & Lewis 1976).
- Given fixed level of parental resources (time, money, care), exogenous increases in family size lead to an increase in the shadow price of child quality.
- Examples of empirical studies on the QQ theory- Rosenzweig & Wolpin 1980, Blake 1981, Hanushek 1992, Black, Devereux, & Salvanes 2005, Caceres-Delpiano 2006, Angrist, Lavy, & Schlosser 2010, De Haan 2010.
- Shortage of research and lack of consensus among researchers with respect to family size-child health relationship.
- Rosenzweig & Zhang 2009, Millimet & Wang 2009; Lundborg, Ralsmark, & Rooth 2015; Peters, Rees, & Rey 2015; Zhong 2016.
- Commonly used IV Exogenous variations in family size are generated by twin births and parental preference for a mixed sex composition of their children.

Child Health & Family Size

Two existing theories:

- Considering child health is a function of parental resources and market based health inputs, the QQ theory would imply that a there is an inverse relationship between family size and child health.
- The Hygiene Theory Children in larger families are likely to experience early exposure to various diseases that develops future immune system (Strachan 1989).
 - Edwards & Grossman 1983; Kruger et al. 2006 Talk about obesity.
 - Jenson & Ahlburg 2002; Ponsonby et al. 1998; Rona et al. 1997; Strachan 1989; 1997 - Talk about other diseases.

Measures of Health Outcome

- Child's body weight is an important health indicator.
- Obesity is associated with long term health implications including diabetes, heart diseases, hypertension, and cancer.
- Underweight increases risk of mortality and affects cognitive development.
- Economic hardships and food insecurity may place children at the risk of having extreme body weight outcomes.
- Childhood obesity is more prevalent in the US compared to childhood underweight (16.9 % Vs 3.5%, NHANES, 2012-2013).

The National Longitudinal Surveys

- Child information are obtained from the biennial Child and Young Adult Surveys (NLSY CYA, 1986-2012)
- NLSY CYA are based on a total 11,511 children belonging to 4,931 mothers from the original cohort of the National Longitudinal Surveys of Youth (1979).
- The mother-child dataset is created by matching mothers' information with their children's information.
- The analysis focuses on children aged between 2 and 17.

NLSY Information

- Dependent variables are child BMI and binary indicators for whether a child is overweight, obese, underweight (and of healthy weight) (CDC, 2000).
- The explanatory variable is the number of household member aged under 18.
- Controls:
 - Child: Age, birthweight, sex, race, and birthorder.
 - Mother: AFQT scores, Rotter Scale, Highest grade completed, and BMI.
 - Family: Net total income (real terms) and HOME-SF raw score.
- Additional child health and behavioral outcomes include sibling relationships, hours of watching TV during weekdays, and incidence of illness that requires medical attention.

Empirical Strategy- Cross-sectional Analysis

- We perform probit (OLS) regressions for binary (continuous) health indicators.
- For the IV regression analysis, we estimate:

$$Y_{it} = \beta_0 + \beta_1 (\widehat{HHsize}_{it}) + X_{it}\beta_2 + \epsilon_{it}$$
 (1)

$$HHsize_{it} = \alpha_0 + \alpha_1 Z_{it} + X_{it} \alpha_2 + v_{it}$$
 (2)

- β_1 estimates the family size impact on child health outcomes measured by Y_{it} .
- Equation (2)- The first-stage of the IV regressions, where Z_{it} is our instrumental variable.
 - Twin IV Z_{it} is a binary indicator that equals 1 if there is a twin in the family.
 - Same-sex siblings IV- Z_{it} is a binary indicator that equals I if a family's first two children are of the same sex.

Household size and Illness- What the data suggests

IV regression analysis

- Unrestricted sample (UR): Child reside with mother.
- Restricted sample (R): Child reside with both parents.

Table: Household size effects on child body weight

Dependent Variable	BMI		Overweight		Obese		Underweight		Healthy weight	
Estimation	UR	R	UR	R	UR	R	UR	R	UR	R
OLS/ Probit	-0.210* (0.057)	-0.234** (0.081)	-0.012** (0.005)	-0.015** (0.007)	-0.013*** (0.004)	-0.017*** (0.005)	0.002 (0.003)	0.003	0.013** (0.005)	0.016**
N (UR=11733) (R=7193)	` ′	,	, ,	, ,	, ,	,	,	,	, ,	, ,
Twin IV	0.444 (0.344)	-0.344 (0.649)	0.064 (0.041)	-0.037 (0.069)	0.017 (0.042)	-0.042 (0.051)	-0.031 (0.034)	0.041 (0.062)	-0.037 (0.044)	-0.002 (0.083)
N (UR=11280) (R=6915)										
Sex-ratio IV	-0.642 (1.534)	0.206 (1.843)	-0.177 (0.112)	-0.183 (0139)	-0.101 (0.117)	-0.082 (0.135)	0.114 (0.093)	-0.002 (0.108)	0.068 (0.139)	0.177 (0.135)
N (UR=3485) (R=2279)										

Additional Outcomes

Table: Household size effects on additional outcomes

Dunhit	/ OLS	т:	n IV	Same sex IV				
Probit	/ UL3	I WI	n IV	Same sex IV				
UR	R	UR	R	UR	R			
Sibling relationship								
0.018**	0.048***	0.146***	0.275***	0.526**	0.545**			
(0.008)	(0.010)	(0.049)	(0.097)	(0.239)	(0.235)			
11673	7051	11278	6834	3591	2265			
TV viewing								
-0.017*	-0.035**	-0.050	-0.094	-0.361	-0.287			
(0.009)	(0.013)	(0.066)	(0.157)	(0.297)	(0.270)			
8964	4726	8150	4320	2711	1502			
Medical Illness								
-0.029***	-0.030***	0.030	0.097	0.053	0.102			
(0.004)	(0.006)	(0.037)	(0.090)	(0.127)	(0.133)			
18544	11549	17840	11115	5678	3810			

Main findings - Cross-sectional Analysis

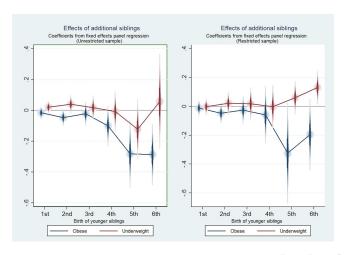
- OLS/ Probit estimates suggest that increase in household size by an additional member improves child health outcomes.
- We do not find any significant health effects of household size in the IV regressions.
- Consistent with some previous studies, we do not find evidence of a QQ trade-off.
- Increase in sibling size is likely to be associated with positive health externalities.

Potential Empirical Concerns & Panel Regression

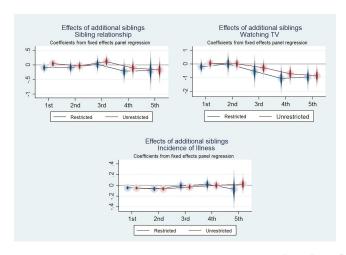
- Exclusion restriction assumption may not be valid Close birth spacing (twin IV) and economies of scale (Sex-ratio IV).
- Sample selection issues Effects of family size variations in large families may differ from size changes in smaller families.
- Household size is a broader definition of family size.
- As a further robustness check, we perform panel regression analysis controlling for unobserved child fixed effects that may bias the causal estimates of family size effects.
- To accurately measure the effects of changes in family size, we look at the effect of birth of a younger sibling on health outcomes of younger siblings.

Fixed Effects Regression Model

- Health effects of birth of a younger sibling $Y_{ijt} = \gamma_0 + \gamma_1 1.\{after\}_{ijt} + X_{ijt}\gamma_2 + a_i + u_{ijt}$ (3)
- Variations in health outcomes across successive births of younger siblings -


$$Y_{ijt} = \rho_0 + \sum_{j=i+1}^{N} \mu_j 1.\{after\}_{ijt} + X_{ijt}\rho_2 + a_i + e_{ijt}$$
 (4)

Panel Analysis - Equation (3) estimates


Table: Fixed effects estimates of family size variations

	В	MI	Overweight		Obese		Underweight	
Unrestricted Sample (N=17264)								
Birth of a	-0.344***		-0.021**		-0.020**		0.012**	
younger sibling	(0.114)		(0.009)		(0.008)		(0.006)	
-Short-term		-0.276**		-0.014*		-0.018**		0.013
(0-3 years)		(0.140)		(0.011)		(0.009)		(0.009)
-Long-term		-0.385***		-0.027**		-0.021**		0.012*
(3+ years)		(0.126)		(0.011)		(0.009)		(0.006)
Restricted Sample (N =10359)								
Birth of a	-0.289*		-0.026**		-0.025**		0.006	
younger sibling	(0.157)		(0.012)		(0.010)		(0.008)	
-Short-term		-0.275		-0.020		-0.020**		0.006
(0-3 years)		(0.183)		(0.013)		(0.010)		(0.011)
-Long-term		-0.301*		-0.032**		-0.028**		0.005
(3+ years)		(0.183)		(0.014)		(0.011)		(0.008)

Family Size Effects Across Successive Births - Body weight

Additional Child Outcomes - Fixed Effects Analysis

Results-Summary

- Increase in family size by an additional child reduces the likelihood of obesity for older siblings.
- However, increase in family size may also lead to an increase in the probability of being underweight.
- Birth of younger siblings (at lower parities) may lead to a
 decrease in the probability of falling ill (Hygiene theory) and
 lowers the frequency of watching TV during weekdays at
 higher parities.

Concluding Remarks

- Child quantity may not affect child health as increase in shadow price of parental investments are likely to be offset by positive health externalities in large sibship size.
- This study is an important empirical contribution to family and child health literature.
- Results from this study have important policy implications.
- Parental investments are not only determined by child quantity but may also depend on parental priorities regarding child development.
- In the presence of resource constraints, child health may be more important to parents child's cognitive development.

Thank You!!

Thank you very much for your time!!