In And Out Of Unemployment - Labour Market Dynamics And The Role Of Testosterone

Peter Eibich (MPIDR)
Ricky Kanabar (University of Bath)
Alexander Plum (AUT)
Julian Schmied (MPIDR & FU Berlin)

42nd Australian Health Economics Society Conference

September 22, 2021

- 'Joblessness leaves permanent scars on individuals' (Arulampalam, 2001, p. 585)
 - Observable factors (individual or household characteristics, past unemployment experience,...)
 - personality traits and non-cognitive skills (locus of control, the Big 5 personality traits,...)
- ► Hormones:
 - Testosterone (T) among men linked to risk-attitude and aggression, motivation, pro-social behaviour
 - Predictor for men's labour market performance
- In this paper: Testosterone ←⇒ Entering/Exiting unemployment

- 'Joblessness leaves permanent scars on individuals' (Arulampalam, 2001, p. 585)
 - Observable factors (individual or household characteristics, past unemployment experience,...)
 - personality traits and non-cognitive skills (locus of control, the Big 5 personality traits,...)
- ► Hormones:
 - Testosterone (T) among men linked to risk-attitude and aggression, motivation, pro-social behaviour
 - ► Predictor for men's labour market performance
- In this paper: Testosterone ←⇒ Entering/Exiting unemployment

- 'Joblessness leaves permanent scars on individuals' (Arulampalam, 2001, p. 585)
 - Observable factors (individual or household characteristics, past unemployment experience,...)
 - personality traits and non-cognitive skills (locus of control, the Big 5 personality traits,...)
- ► Hormones:
 - Testosterone (T) among men linked to risk-attitude and aggression, motivation, pro-social behaviour
 - ► Predictor for men's labour market performance
- ▶ In this paper: Testosterone ⇐⇒ Entering/Exiting unemployment

- 'Joblessness leaves permanent scars on individuals' (Arulampalam, 2001, p. 585)
 - Observable factors (individual or household characteristics, past unemployment experience,...)
 - personality traits and non-cognitive skills (locus of control, the Big 5 personality traits,...)
- ► Hormones:
 - ► Testosterone (T) among men linked to risk-attitude and aggression, motivation, pro-social behaviour
 - ▶ Predictor for men's labour market performance
- In this paper: Testosterone ← Entering/Exiting unemployment

- 'Joblessness leaves permanent scars on individuals' (Arulampalam, 2001, p. 585)
 - Observable factors (individual or household characteristics, past unemployment experience,...)
 - personality traits and non-cognitive skills (locus of control, the Big 5 personality traits,...)
- ► Hormones:
 - Testosterone (T) among men linked to risk-attitude and aggression, motivation, pro-social behaviour
 - ▶ Predictor for men's labour market performance
- In this paper: Testosterone ← Entering/Exiting unemployment

- 'Joblessness leaves permanent scars on individuals' (Arulampalam, 2001, p. 585)
 - Observable factors (individual or household characteristics, past unemployment experience,...)
 - personality traits and non-cognitive skills (locus of control, the Big 5 personality traits,...)
- ► Hormones:
 - Testosterone (T) among men linked to risk-attitude and aggression, motivation, pro-social behaviour
 - Predictor for men's labour market performance
- In this paper: Testosterone ←⇒ Entering/Exiting unemployment

The paper in a nutshell

Findings:

- Unemployed men: risk of remaining unemployed significantly declines in T
- ► *Employed men*: risk of becoming unemployed significantly higher for men with high T

The paper in a nutshell

Findings:

- Unemployed men: risk of remaining unemployed significantly declines in T
- ► *Employed men*: risk of becoming unemployed significantly higher for men with high T

Existing literature

- ► Health issues (e.g., cardiovascular disease)
- Demographic outcomes (e.g., fertility, divorce and mating)
- ► Labour market outcome
 - ► Higher earnings after prolonged prenatal T exposure
 - Education to be lower among people with low T levels
 - Choice of occupation: low T individuals → people-oriented jobs high T individuals → things-oriented jobs

Existing literature

- ► Health issues (e.g., cardiovascular disease)
- ▶ Demographic outcomes (e.g., fertility, divorce and mating)
- ► Labour market outcome
 - ► Higher earnings after prolonged prenatal T exposure
 - Education to be lower among people with low T levels
 - Choice of occupation: low T individuals → people-oriented jobs high T individuals → things-oriented jobs

Existing literature

- ► Health issues (e.g., cardiovascular disease)
- ▶ Demographic outcomes (e.g., fertility, divorce and mating)
- Labour market outcome
 - ► Higher earnings after prolonged prenatal T exposure
 - Education to be lower among people with low T levels
 - Choice of occupation: low T individuals → people-oriented jobs high T individuals → things-oriented jobs

Existing literature

- ► Health issues (e.g., cardiovascular disease)
- ▶ Demographic outcomes (e.g., fertility, divorce and mating)
- Labour market outcome
 - Higher earnings after prolonged prenatal T exposure
 - Education to be lower among people with low T levels
 - Choice of occupation: low T individuals → people-oriented jobs high T individuals → things-oriented jobs

Existing literature

- ► Health issues (e.g., cardiovascular disease)
- ▶ Demographic outcomes (e.g., fertility, divorce and mating)
- Labour market outcome
 - Higher earnings after prolonged prenatal T exposure
 - ▶ Education to be lower among people with low T levels
 - Choice of occupation: low T individuals → people-oriented jobs high T individuals → things-oriented jobs

Existing literature

- ► Health issues (e.g., cardiovascular disease)
- ▶ Demographic outcomes (e.g., fertility, divorce and mating)
- Labour market outcome
 - Higher earnings after prolonged prenatal T exposure
 - ▶ Education to be lower among people with low T levels
 - Choice of occupation: low T individuals → people-oriented jobs high T individuals → things-oriented jobs

Existing literature

- Association with risk-taking, dominant behaviour and aggression
- ▶ But also status-enhancing pro-social behaviour
- More willing to engage in competitive tasks and they showed more persistence solving an impossible task
- ▶ Positive association with numeric capabilities
- ▶ Perform better in face-to-face situations

Existing literature

- Association with risk-taking, dominant behaviour and aggression
- But also status-enhancing pro-social behaviour
- More willing to engage in competitive tasks and they showed more persistence solving an impossible task
- ▶ Positive association with numeric capabilities
- ▶ Perform better in face-to-face situations

Existing literature

- Association with risk-taking, dominant behaviour and aggression
- But also status-enhancing pro-social behaviour
- More willing to engage in competitive tasks and they showed more persistence solving an impossible task
- ▶ Positive association with numeric capabilities
- ▶ Perform better in face-to-face situations

Existing literature

- Association with risk-taking, dominant behaviour and aggression
- But also status-enhancing pro-social behaviour
- More willing to engage in competitive tasks and they showed more persistence solving an impossible task
- Positive association with numeric capabilities
- Perform better in face-to-face situations

Existing literature

- Association with risk-taking, dominant behaviour and aggression
- But also status-enhancing pro-social behaviour
- More willing to engage in competitive tasks and they showed more persistence solving an impossible task
- Positive association with numeric capabilities
- ▶ Perform better in face-to-face situations

Existing literature

- ightharpoonup Higher T levels associated with pro-social behaviour ightarrow larger social networks
- Job search (assessment centres/job interviews) might favour competitive, dominant and pro-social individuals
- In employment, employers learn about their employees' productivity → competition-seeking and dominant behaviour may become less critical
- lacktriangle Men with low T tend to be more risk-averse ightarrow prefer jobs that offer more stability

Existing literature

- lacktriangle Higher T levels associated with pro-social behaviour ightarrow larger social networks
- Job search (assessment centres/job interviews) might favour competitive, dominant and pro-social individuals
- In employment, employers learn about their employees' productivity → competition-seeking and dominant behaviour may become less critical
- \blacktriangleright Men with low T tend to be more risk-averse \rightarrow prefer jobs that offer more stability

Existing literature

- ► Higher T levels associated with pro-social behaviour → larger social networks
- Job search (assessment centres/job interviews) might favour competitive, dominant and pro-social individuals
- In employment, employers learn about their employees' productivity → competition-seeking and dominant behaviour may become less critical
- lacktriangle Men with low T tend to be more risk-averse ightarrow prefer jobs that offer more stability

Existing literature

- ► Higher T levels associated with pro-social behaviour → larger social networks
- Job search (assessment centres/job interviews) might favour competitive, dominant and pro-social individuals
- In employment, employers learn about their employees' productivity → competition-seeking and dominant behaviour may become less critical
- lacktriangle Men with low T tend to be more risk-averse ightarrow prefer jobs that offer more stability

Health and biomarkers Survey

- Spine: Understanding Society data (UK based)
 - ▶ Started in 2009 with 10 waves available
 - ▶ 40 000 households at Wave 1
- ▶ 5 months after their Wave 2 or Wave 3 (2010-2013) → 20 000 adults received health assessment visit from a registered nurse (Health and biomarkers survey)
- ▶ Blood samples were taken to extract a range of biomarker data, including measures of growth hormones (T, DHEA's, IGF-1,...).

Health and biomarkers Survey

- Spine: Understanding Society data (UK based)
 - ▶ Started in 2009 with 10 waves available
 - ▶ 40 000 households at Wave 1
- ▶ 5 months after their Wave 2 or Wave 3 (2010-2013) → 20 000 adults received health assessment visit from a registered nurse (Health and biomarkers survey)
- ▶ Blood samples were taken to extract a range of biomarker data, including measures of growth hormones (T, DHEA's, IGF-1,...).

Health and biomarkers Survey

- Spine: Understanding Society data (UK based)
 - ▶ Started in 2009 with 10 waves available
 - 40 000 households at Wave 1
- ▶ 5 months after their Wave 2 or Wave 3 (2010-2013) → 20 000 adults received health assessment visit from a registered nurse (Health and biomarkers survey)
- ▶ Blood samples were taken to extract a range of biomarker data, including measures of growth hormones (T, DHEA's, IGF-1,...).

Data Adjusting T-level

T-levels change by age and time of day

- Men between 20-64 with the interview starting between 8 am and 8 pm (N=3 777)
- Form five age groups (20-29, 30-39, 40-49, 50-59, 60-64)
- For each age-group: Standardize them to 10 am

Data Adjusting T-level

T-levels change by age and time of day

- ► Men between 20-64 with the interview starting between 8 am and 8 pm (*N*=3777)
- Form five age groups (20-29, 30-39, 40-49, 50-59, 60-64)
- ► For each age-group: Standardize them to 10 am

Data Adjusting T-level

T-levels change by age and time of day

- Men between 20-64 with the interview starting between 8 am and 8 pm (N=3 777)
- Form five age groups (20-29, 30-39, 40-49, 50-59, 60-64)
- For each age-group: Standardize them to 10 am

Figure: Level of testosterone (nmol/l)

Data Longitudinal data

Dataset preparation:

- 1. Health and biomarker Survey \rightarrow men aged between 20 and 64 who are unemployed, or employed
- 2. Linking with first *post*-nurse visit wave of *Understanding Society* (employed and unemployed)
- 3. Final sample: unemployed (N=147), employed (N=2224)

Data Longitudinal data

Dataset preparation:

- 1. Health and biomarker Survey \rightarrow men aged between 20 and 64 who are unemployed, or employed
- 2. Linking with first *post*-nurse visit wave of *Understanding Society* (employed and unemployed)
- 3. Final sample: unemployed (N=147), employed (N=2224)

Data Longitudinal data

Dataset preparation:

- 1. Health and biomarker Survey \rightarrow men aged between 20 and 64 who are unemployed, or employed
- 2. Linking with first *post*-nurse visit wave of *Understanding Society* (employed and unemployed)
- 3. Final sample: unemployed (N=147), employed (N=2224)

Methodology

Reduced-form model:

$$y_{it} = 1 \left(\alpha_1 y_{i(t=0)} + X'_{i(t=0)} \beta + u_i > 0 \right)$$
 (1)

- where i = 1, ..., N are individuals, and $y_i = 1$ if i was unemployed at the first interview *post*-nurse visit and 0 otherwise.
- covariates: age, highest qualification, self-rated health, region, urban identifier, household size, long-term disability and legal marital status.

Methodology

Including T as a covariate:

- ► Model 1: linear version of corrected T level
- ► Model 2: quadratic version of corrected T level
- ► *Model 3:* Deviation of corrected T level: lowest quartile, second to third quartile, highest quartile

Methodology

Including T as a covariate:

- ► Model 1: linear version of corrected T level
- ► Model 2: quadratic version of corrected T level
- ► *Model 3:* Deviation of corrected T level: lowest quartile, second to third quartile, highest quartile

Methodology

Including T as a covariate:

- ► Model 1: linear version of corrected T level
- ► Model 2: quadratic version of corrected T level
- ► *Model 3:* Deviation of corrected T level: lowest quartile, second to third quartile, highest quartile

Data

Figure: Level of testosterone (nmol/l) by labour market status at the nurse visit

Results

Base regression

		Full Sample	
Model	(1)	(2)	(3)
T (nmol/l)	0.0034	-0.0170	
	(0.0095)	(0.0515)	
$T (nmol/l)^2$		0.0005	
		(0.0013)	
T		,	
1st quartile	reference category		
2nd – 3rd quartile			-0.1569
			(0.1216)
4th quartile			0.0024
			(0.1347)
Observations	2 371	2 371	2 371
LogLikelihood	-372.983	-372.903	-371.772

Results

Base regression

	Initially unemployed		
Model	(1)	(2)	(3)
T (nmol/l)	-0.0217	-0.1784	
_ ,	(0.0207)	,	
$T (nmol/l)^2$		0.0038	
		(0.0030)	
Т			
1st quartile	reference category		
2nd – 3rd quartile			-0.8027***
			(0.3024)
4th quartile			-0.6206*
			(0.3346)
Observations	147	147	147
LogLikelihood	-84.743	-83.902	-81.538

Results

Base regression

	Ini	tially emplo	yed
Model	(1)	(2)	(3)
T (nmol/l)	0.0091	-0.0007	
T (nmol/l) ²	(0.0110)	(0.0604) 0.0003	
т		(0.0015)	
1st quartile 2nd – 3rd quartile	reference category -0.0247		
4th quartile			(0.1408) 0.1191 (0.1561)
Observations	2 224	2 224	2 224
LogLikelihood	-278.847	-278.833	-278.576

Results Base regression

Table: APE of becoming unemployed

	Labour mark unemployed	et position during the nurse visit employed	
1st quartile	reference category		
2nd – 3rd quartile	-0.2462***	-0.0015	
	(0.0858)	(0.0085)	
4th quartile	-0.1856*	0.0082	
	(0.0957)	(0.0107)	
Individuals	147	2 224	

Robustness checks

Figure: Robustness on different age-windows (initially unemployed)

Robustness checks

Figure: Robustness on different cut-off thresholds (initially unemployed)

Robustness checks

Table: APE of becoming unemployed at wave 1 or 2

	Labour marke unemployed	et position during the nurse visit employed	
1st quartile	reference category		
2nd – 3rd quartile	-0.1681*	0.0088	
	(0.0929)	(0.0940)	
4th quartile	-0.1561	0.0264**	
	(0.1002)	(0.0125)	
Individuals	120	1 988	

Conclusion

Heterogeneous effect of testosterone on labour market transitions:

- ► Initially unemployed: those with medium and high T levels are significantly more likely to exit unemployment
- Initially employed: higher T levels are more likely to experience unemployment
- Open task: Mendelian Randomization

Conclusion

Heterogeneous effect of testosterone on labour market transitions:

- ► Initially unemployed: those with medium and high T levels are significantly more likely to exit unemployment
- ► Initially employed: higher T levels are more likely to experience unemployment
- Open task: Mendelian Randomization