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1. Background

Motivation:
• Maximum Simulated Likelihood (MSL): integrating out (multivariate) 

normal densities
• Approach: simulating likelihood and averaging over these
• What we need: draws from standard uniform density, interval [0,1)
• Draws are taken from:
 Pseudorandom number generator (Stata: runiform())
 Quasi-random number generator using prime numbers (Halton draws)

• Today: randomly assigned normally distributed draws (RAND)
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2. Maximum Simulated Likelihood

Maximum Simulated Likelihood:
• Popularity increased with computational power
• Advantage: flexibility in modelling multivariate normal densities:

‘it can be readily applied in conjunction with almost any joint distribution 
of random parameters’ (Hole & Yoo 2017, p. 998)

• Attention in economic literature:
 Mixed logit models / random parameter logit
 Cappellari & Jenkins (2008): Low pay – panel retention – employment
 Stewart (2007): heterogeneous slope model
 Cai et al. (2018): NILF, unemployment, self-employment, low pay and 

higher pay
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2. Maximum Simulated Likelihood

Maximum Simulated Likelihood:
• Problem: ‘likelihood is a multi-dimensional integral which has no closed 

form expression and needs to be numerically approximated’ (Hole & Yoo
2017, p. 997)

• Why is integrating out possible?
 Sample: 𝑖𝑖 = 1, …𝑁𝑁 individuals, observed 𝑡𝑡 = 1, … ,𝑇𝑇 periods
 Example:

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝟏𝟏 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝛼𝛼𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 > 0
with 𝛼𝛼𝑖𝑖~iid 𝑁𝑁 0,𝜎𝜎𝛼𝛼2 and independent of 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑖𝑖 for all 𝑖𝑖, 𝑡𝑡.

 𝑢𝑢𝑖𝑖𝑖𝑖~𝑁𝑁 0,𝜎𝜎𝑢𝑢2 → normalization required, convenient one is 𝜎𝜎𝑢𝑢2 = 1
 𝑃𝑃𝑖𝑖𝑖𝑖 𝛼𝛼∗ = Φ 𝑥𝑥𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝜎𝜎𝛼𝛼𝛼𝛼∗ and 𝛼𝛼∗ = 𝛼𝛼/𝜎𝜎𝛼𝛼
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2. Maximum Simulated Likelihood

Maximum Simulated Likelihood:
• Concept of MSL – in plain English
 𝛼𝛼𝑖𝑖 captures individual-specific time-invariant differences like 

motivation/ability (by definition: completely exogenous)
 Motivation/ability ranges from very low to very high
 For each individual, every possible scenario from very low level of 

motivation/ability to very high level of motivation/ability is calculated
 There is no link between the individuals’ level of motivation/ability; 

thus, during each scenario, 𝛼𝛼𝑖𝑖 is normally distributed
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2. Maximum Simulated Likelihood

Maximum Simulated Likelihood:
• Concept of MSL:
 Sample size: 𝑁𝑁 × 𝑇𝑇
 𝐾𝐾-parameters that need to be integrated out 𝑘𝑘 = 1, … ,𝐾𝐾
 For each parameter, take 𝑑𝑑 = 1, … ,𝐷𝐷 draws from a standard uniform 

density
 Transform by the inverse standard normal distribution Φ−1
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2. Maximum Simulated Likelihood
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2. Maximum Simulated Likelihood

Maximum Simulated Likelihood:
• Concept of MSL:
 Sample size: 𝑁𝑁 × 𝑇𝑇
 𝑘𝑘-parameters that need to be integrated out 
 For each parameter, take 𝑑𝑑𝑖𝑖𝑖𝑖 = 1, … ,𝐷𝐷 draws from a standard uniform 

density
 Transform by the inverse standard normal distribution: Φ−1 𝑑𝑑𝑖𝑖𝑖𝑖
 Calculating the likelihood and averaging over all draws

• Requirement: draws are equally distributed within and between individuals
• In most cases: 𝑁𝑁 > 𝐷𝐷, therefore ensuring equal distribution within 𝑖𝑖 is 

challenging
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3. Halton draws

Halton sequence:
• Halton sequences have certain characteristics that make them favourable 

compared to pseudorandom number generator 
• Halton sequence are based on prime numbers
• 𝐾𝐾 prime numbers are required (2,3,5,7,…)
• A sequence consists of the first 𝑁𝑁 × 𝐷𝐷 entries (excluding burned)
• Example for prime number 2:
 ⁄1 2 , ⁄1 4 , ⁄2 4 , ⁄3 4 , ⁄1 8 , ⁄2 8 , ⁄3 8 , ⁄4 8 , ⁄5 8 , ⁄6 8 , ⁄7 8 , …
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3. Halton draws
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3. Halton draws
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Shapiro-Wilk tests for normality:
• Prime numbers 2 & 11
• 𝑁𝑁 = 5,000;𝐷𝐷 = 50
• For each individual, applying Shapiro-Wilk test for normality
• Reporting distribution of 𝑝𝑝 − values



3. Halton draws
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4. RAND

Randomly assigned normally distributed draws  (RAND):
1. Generate D × 2 matrix 𝑣𝑣𝑖𝑖𝑖𝑖:

𝑣𝑣𝑖𝑖𝑖𝑖 =

Φ−1 1/ 𝐷𝐷 + 1
𝑎𝑎

+ (0.5 − 𝑟𝑟11) ∗ .001
𝑏𝑏

�𝑟𝑟21
𝑐𝑐

⋮ ⋮
Φ−1 𝐷𝐷/ 𝐷𝐷 + 1 + (0.5 − 𝑟𝑟1𝐷𝐷) ∗ .001 𝑟𝑟2𝐷𝐷

where 𝑟𝑟𝑗𝑗𝑗𝑗 with 𝑑𝑑 = 1, … ,𝐷𝐷 and 𝑗𝑗 = 1,2 are random standard normal 
distributed numbers
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4. RAND

Randomly assigned normally distributed draws  (RAND):
1. Generate D × 2 matrix 𝑣𝑣𝑖𝑖𝑖𝑖:

𝑣𝑣𝑖𝑖𝑖𝑖 =
Φ−1 1/ 𝐷𝐷 + 1 + (0.5 − 𝑟𝑟11) ∗ .001 𝑟𝑟21

⋮ ⋮
Φ−1 𝐷𝐷/ 𝐷𝐷 + 1 + (0.5 − 𝑟𝑟1𝐷𝐷) ∗ .001 𝑟𝑟2𝐷𝐷

where 𝑟𝑟𝑗𝑗𝑗𝑗 with 𝑑𝑑 = 1, … ,𝐷𝐷 and 𝑗𝑗 = 1,2 are random standard normal 
distributed numbers

2. Sort 𝑣𝑣𝑖𝑖𝑖𝑖 according to 𝑟𝑟2𝑗𝑗 in ascending order
3. Generate RAND𝑖𝑖 = 𝑣𝑣𝑖𝑖1′ 1 …𝐷𝐷, 1 \𝑣𝑣𝑖𝑖2′ 1 …𝐷𝐷, 1 \. . . \𝑣𝑣𝑖𝑖𝑁𝑁′ 1 …𝐷𝐷, 1
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5. Simulation

Simulation I:
• Univariate equation, 𝑁𝑁 = 1000 and T = 6
• 50 replications, 𝐷𝐷 = 20,30, … , 100
• Halton draws (prime 2) & RAND
• 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝟏𝟏 0.5𝜏𝜏𝑖𝑖𝑖𝑖 + 1 + 𝛼𝛼𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 > 0 with 𝜏𝜏𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑖𝑖𝑖𝑖 ,𝛼𝛼𝑖𝑖~𝑁𝑁 0,1
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5. Simulation
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5. Simulation
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Simulation II:
• Bivariate equation, 𝑁𝑁 = 500 and T = 6
• 50 replications, 𝐷𝐷 = 15,30,50,100
• Halton draws (prime 2&3) & RAND
• 𝑦𝑦𝑗𝑗𝑖𝑖𝑖𝑖 = 𝟏𝟏 1 + 𝛼𝛼𝑗𝑗𝑖𝑖 + 𝑢𝑢𝑗𝑗𝑖𝑖𝑖𝑖 > 0 with 𝑢𝑢𝑗𝑗𝑖𝑖𝑖𝑖~𝑁𝑁 0,1 , 𝑗𝑗𝜖𝜖 1,2 and

𝑉𝑉𝑉𝑉𝑉𝑉 =
𝜎𝜎𝛼𝛼1
2

𝜌𝜌𝜎𝜎𝛼𝛼1𝜎𝜎𝛼𝛼2 𝜎𝜎𝛼𝛼1
2 and 𝜎𝜎𝛼𝛼𝑗𝑗

2 = 1 and 𝜌𝜌=.8



5. Simulation
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5. Simulation
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6. Empirical example (MVNP)

Empirical example:

• Cappellari & Jenkins (2007) 
• MSL on multivariate normal probabilities
• Probability being unemployed:

𝑃𝑃𝑖𝑖𝑖𝑖 = Φ5 𝑥𝑥𝑖𝑖1′ 𝛽𝛽, 𝑥𝑥𝑖𝑖2′ 𝛽𝛽, 𝑥𝑥𝑖𝑖3′ 𝛽𝛽, 𝑥𝑥𝑖𝑖4′ 𝛽𝛽, 𝑥𝑥𝑖𝑖5′ 𝛽𝛽
• VCV almost unspecified, 14 parameters estimated 𝜎𝜎𝛼𝛼1

2 = 1 :

𝑉𝑉𝑉𝑉𝑉𝑉 =
𝜎𝜎𝛼𝛼1
2

⋮ ⋱
𝜌𝜌15𝜎𝜎𝛼𝛼1𝜎𝜎𝛼𝛼5 ⋯ 𝜎𝜎𝛼𝛼2

2
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6. Empirical example (MVNP)

RAND on MSL – Magdeburg (23 Aug 2019)



6. Empirical example (MVNP)
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7. Conclusion

Conclusion:
• MSL helpful to integrate out multiple integrals
• Advantage is flexibility in modelling multivariate normal densities
• MSL uses random draws from standard uniform density
• Requirement: Equal distribution within and between individuals
• Quasi-random number generator using prime numbers 
• Here: Randomly assigned normally distributed draws
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Thank you 
for your 

attention!
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